Implicature Unsuspendable Japanese Contrastive wa

Yurie Hara

yhara@udel.edu

University of Delaware

Introduction

This paper

- analyzes Japanese Contrastive Topic along with the theory of compositionality of the scalar implicature computation (Chierchia 2001).
- argues that the contrastive meaning that emerges with Topic marking *wa* in Japanese is a conventional implicature.

Japanese Contrastive Topic

- (1) a. Dare-ga paatii- ni ki-ta-ka?(Who came to the party?)
 - b. JOHN-wa ki-ta John-Top come-Past
 'As for John, he came.' (Implicature: I don't know about others)
 - c. JOHN-ga ki-ta. John-Nom come-Past

'John came.' (complete answer)

Hara 2004

Contrastive Topics always induce scalar implicatures that express the uncertainty of the alternatives (Hara To appear)

- (2) CONTRASTIVE($\langle B, T \rangle$) \Leftrightarrow
 - a. B(T) (assertion)
 - b. \forall T'[[T' \in ALT_C(T) & B(T') entails B(T) & B(T) doesn't entail B(T')] \rightarrow $Poss(\neg B(T'))]$ (implicature)
- (5) CONTRASTIVE($\langle B, T \rangle$) $\exists T'[T' \in ALT_C(T) \& B(T') \text{ entails } B(T) \& B(T) \text{ doesn't entail } B(T')] (presupposition)$

This is similar to but not the quite same as Büring's (1997) analysis of German Topic-Focus contour

Japanese Contrastive Topic

- The propositions that do not have the stronger alternatives are not compatible with Contrastive Topics.
- (3) # Minna-wa kita.
 Everyone-CTop came
 (no implicature is possible)
- The asserted proposition 'Everyone came' is the strongest (most informative) among the alternatives ('Some people came', 'Most people came' etc.)
- There is no room to implicate.
- Not compatible with Contrastive *wa*.

Conventional Implicature

- In Grice (1975), implicatures are divided into two types:
- Conversational
- Conventional

Question Is the scalar implicature that arises with *wa* conversational or conventional?

My answer Conventional

Argument 1: Detachability

Grice (1975) says:

- Conversational implicature: undetachable
- Conventional implicature: detachable

Argument 1: Detachability

The implicature with *wa* is detachable since it depends on the particular lexical item *wa*.

- (1) a. Dare-ga paatii- ni ki-ta-ka?(Who came to the party?)
 - b. JOHN-wa ki-ta
 John-Top come-Past
 'As for John, he came.'
 - (Implicature: I don't know about others)
 - c. JOHN-ga ki-ta. John-Nom come-Past
 'John came.' (complete answer)

Argument 2: Uncancellability

Grice (1975) also says

- Conversational implicature: cancellable
- Conventional implicature: uncancellable

The implicature with *wa* is non-cancellable as we have seen.

(3) # Minna-wa kita.
 Everyone-CTop came
 (no implicature is possible)

Argument 3: Wa in DE

- It is a well-observed fact that a conversational scalar implicature is suspended in a DE context.
- (4) a. 'John read 3 books.'(Scalar Implicature: not 4)
 - b. 'If John reads 3 books, he passes.' (Local Scalar Implicature Lost \rightarrow He will pass even if he reads 4.)

Chierchia 2001

- Scalar implicatures are compositionally computed
- The computation of the strong values (plain meaning + implicature) must be subject to the Strength Condition.
- (5) Strength Condition:The strong value cannot become weaker than the plain value

Chierchia 2001: Implicature and DE

(4b) 'If John reads 3 books, he passes.'(Natural interpretation: He will pass even if he reads 4.)

Chierchia says

- If we keep a locally computed implicature in a DE context, it would yield a weakening of information.
- Therefore, it must be removed in a DE context

Let us go through how the weakening takes place step by step.

Chierchia 2001

- the local conversational implicature $|x: \operatorname{read}(j)(x) \wedge \operatorname{book}(x)| \not\geq 4$
- if it were not removed, the strong value of the whole sentence would be
 [|x: read(j)(x) ∧ book(x)| ≥ 3 ∧ |x:
 read(j)(x) ∧ book(x)| ≥ 4] → pass(j)
- Now, let us compare this with the plain meaning of the whole sentence,
 |x: mod(i)(x) \land hook(x)| > 2 \log pass(i)
 - $|x: \operatorname{read}(j)(x) \wedge \operatorname{book}(x)| \ge 3 \to \operatorname{pass}(j)$

Plain meaning

	local		global
	$ x: \mathbf{read}(j)(x) $	pass(j)	$ x:\mathbf{read}(j)(x) $
	$ \wedge \mathbf{book}(x) \geq 3$		$\wedge \mathbf{book}(x) \geq 3$
			$\rightarrow \mathbf{pass}(j)$
John read 2	0	1	1
John read 2	0	0	1
John read 3	1	1	1
John read 3	1	0	0
John read 4	1	1	1
John read 4	1	0	0

Strong meaning

	local		global	
	$ x:\mathbf{read}(j)(x) $	pass(j)	$[x:\mathbf{read}(j)(x) $	
	$\wedge \mathbf{book}(x) \geq 3$		$\wedge \mathbf{book}(x) \geq 3$	
	$\wedge x: \mathbf{read}(j)(x)$		$\wedge x: \mathbf{read}(j)(x)$	
	$\wedge \mathbf{book}(x) \not\geq 4$		$\wedge \mathbf{book}(x) \not\geq 4]$	
			$\rightarrow \mathbf{pass}(j)$	
John read 2	0	1	1	
John read 2	0	0	1	
John read 3	1	1	1	
John read 3	1	0	0	
John read 4	0	1	1	
John read 4	0	0	1 Implicature Unsus	pendable – p.15/

Weakening

	plain	strong
	$ x: \mathbf{read}(j)(x) $	$[x: \mathbf{read}(j)(x) $
	$ \wedge \mathbf{book}(x) \geq 3$	$\wedge \mathbf{book}(x) \geq 3$
	$\rightarrow \mathbf{pass}(j)$	$\wedge x: \mathbf{read}(j)(x)$
		$\wedge \mathbf{book}(x) \not\geq 4]$
		$\rightarrow \mathbf{pass}(j)$
John read 2	1	1
John read 2	1	1
John read 3	1	1
John read 3	0	0
John read 4	1	1
John read 4	\bigcirc \leftarrow Stro	onger!! (1)

Weakening

- The plain meaning is stronger than the strong meaning.
- This violates the Strength Condition
- Therefore the implicature must be removed.
- Consequently, in a DE context, only the plain meaning is retained for the subsequent computation.

Chierchia 2001

Two separate application rules for DE and non-DE contexts

(6) Strong Application Suppose $\alpha = [\beta \gamma]$, where β is of type $\langle a, b \rangle$ and γ of type a. Then: $\llbracket [\beta \gamma] \rrbracket^{S}$ $\left\{ \begin{array}{c} \llbracket \beta \rrbracket^{S}(\llbracket \gamma \rrbracket^{S}), \text{ if } \llbracket \beta \rrbracket^{S} \text{ is not DE} \\ \llbracket \beta \rrbracket^{S}(\llbracket \gamma \rrbracket) \land \neg(\llbracket \beta \rrbracket(\gamma^{ALT})), \text{ otherwise} \end{array} \right\}$

∧S is removed

wa and implicature

The implicature induced by *wa*, however, cannot be suspended in a DE context.

(7) * John-ga hon-o 3-satsu-wa John-Nom book-Acc 3-Class-Top yom-eba, goukaku-suru. read-if, pass-do
'If John reads [3]_{Topic} books, he passes.'

wa and implicature

- if the local implicature induced by wa,
 Poss(|x : read(j)(x) ∧ book(x)| ≥ 4), were a conversational implicature
- it should be removed and only the plain meaning would be passed on to the subsequent computation
- If it is conventional, it will resist within a DE context
- This violates the Strength Condition, therefore it is predicted that (7) is unacceptable.
- In fact, (7) is unacceptable; therefore the implicature induced by *wa* must be conventional.

Global Implicature

How about the global implicature for (7)?

- (7) * John-ga hon-o 3-satsu-wa John-Nom book-Acc 3-Class-Top yom-eba, goukaku-suru. read-if, pass-do
 (If John mode [2] books how
 - 'If John reads $[3]_{Topic}$ books, he passes.'
- the proposition
 - $|x: \operatorname{read}(j)(x) \wedge \operatorname{book}(x)| \ge 3 \to \operatorname{pass}(j)$
- a stronger scalar alternative $|x : \operatorname{read}(j)(x) \wedge \operatorname{book}(x)| \ge 2 \rightarrow \operatorname{pass}(j)$
- $Poss(\neg[|x: read(j)(x) \land book(x)| \ge 2 \rightarrow pass(j)])$ could be an implicature

Global Implicature should be possible

- Moreover, the global implicature is possible in other cases.
- *wa*-marked phrase in a complement clause.
- (8) minna-wa kuru-to Everyone-Top come-Comp omowa-nakat-ta. think-Neg-Past
 'I didn't think [everyone]_{Topic} would come.'

"Everyone comes" does not have a stronger alternative. The local implicature is impossible.

Global Implicature should be possible

Globally speaking,

- ¬think(∀x[person(x)][come(x)]) indeed has a stronger scalar alternative
- \neg think $(\exists x [person(x)] [come(x)])$
- implicature Poss(¬¬think(∃x[person(x)][come(x)]))
 "I thought some people would come".

So here, we DO need a global implicature.

Movement of Implicature Operator

Proposal: An island-sensitive move-

- ment of an implicature operator, which is part of the lexical meaning of *wa*.
- What does *wa* do?
- At the base position, *wa* generates scalar alternatives (e.g.{one, some, most, every}) and introduces an implicature operator.

(9) $\begin{bmatrix} CP & [NegP & [CP & [XP & Op & [XP & everyone &] \\ CP & [NegP & [CP & [XP & Op & [XP & everyone &] \\ CP & [NegP & [CP & [VP & Op & [XP & everyone &] \\ CP & [NegP & [CP & [VP & Op & [XP & everyone &] \\ CP & [NegP & [CP & [VP & Op & [XP & everyone &] \\ CP & [NegP & [CP & [VP & Op & [XP & everyone &] \\ CP & [NegP & [CP & [VP & Op & [XP & everyone &] \\ CP & [NegP & [CP & [VP & Op & [XP & everyone &] \\ CP & [NegP & [CP & [VP & Op & [XP & everyone &] \\ CP & [NegP & [CP & [VP & Op & [XP & everyone &] \\ CP & [NegP & [CP & [VP & Op & [XP & everyone &] \\ CP & [NegP & [CP & [VP & Op & [XP & everyone &] \\ CP & [NegP & [CP & [VP & Op & [XP & everyone &] \\ CP & [NegP & [VP & [VP & everyone &] \\ CP & [NegP & [VP & [VP & Op & [XP & everyone &] \\ CP & [NegP & [VP & [VP & everyone &] \\ CP & [NegP & [VP & [VP & everyone &] \\ CP & [VP & everyone &] \\ CP & [VP & [VP & everyone &] \\ CP & [VP & everyone$

Movement of Implicature Operator

The implicature operator moves to the clause-initial position, and computes the implicature by picking an alternative stronger than the plain meaning.

(10)
$$\begin{bmatrix} Op & Op & [NegP & [CP & [XP & t] & [VP & everyone &] & ALT - wa &] & came \\ Comp & I & think & Neg & Past &] & (8) \end{bmatrix}$$

Island violation

This movement is blocked if *wa* is inside an adjunct clause.

(11)
$$\begin{bmatrix} Op & John-Nom book-Acc \\ & \\ \end{bmatrix} ALT - wa \end{bmatrix} read if] pro passes]$$
(7)

(7) becomes unacceptable for the following reasons:

- 1. a *wa*-marked sentence must induce an implicature
- 2. the local computation of implicature yields a weakening
- 3. the global computation of implicature is blocked due to the island violation

Conclusion

- *wa*-induced implicature is conventional implicature since...
- The implicature is detachable
- The implicature is uncancellable
- The implicature cannot be removed in a DE-context
- Further I have proposed that movement of implicature operator that correctly explains why *wa* cannot be used within an downward-entailing adjunct clause.

Reference

Büring, D. (1997), "The Great Scope Inversion Conspiracy." *Linguistics and Philosophy* 20: 175–194.

Chierchia, G. (2001), "Scalar Implicatures, Polarity Phenomena, and Syntax/Pragmatics Interface."

Grice, H. P. (1975), *Logic and conversation*, New York: Academic Press, vol. 3 of *Syntax and Semantics: Speech Acts*. pp. 43–58.

Hara, Yurie (To appear), "Scope Inversion in Japanese: Contrastive Topic Require Implicatures." In *Japanese/Korean Linguistics* 13, CSLI Publication. Implicature Unsuspendable – p.28/28