Japanese modalized questions

their prosody and levels of meaning

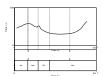
Yurie Hara

Waseda/Hokkaido University

Colluquium at University of Konstanz

Falling Declaratives: daroo

- a sentence-final auxiliary that has a modal-flavor.
- daroo in a plain declarative → the speaker's bias
- John-ga kuru daroo↓
 Jonn-NOM come DAROO
 - 'John is coming, I bet.'
 - John is coming, I bet.
 - 'Probably, John is coming.'

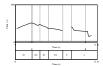

Outline

- Basic Paradigm
- Proposal: daroo as an Entertain Modality
- Background 1: Inquisitive Epistemic Logi
 - Background 2: Shunting-type expressives
 - Proposal 1: Daroo as root-level entertain modal
 - ullet Proposal 2: 3 interrogativizers, paratactic association and $\mathcal{L}_{CI}^{+S,PA}$
- Deriving the interpretations
 - wh-question:
- Conclusion

1/71

Rising Declaratives: daroo↑

(2) Yurie-wa wain-o nomu daroo↑ Yurie-TOP wine-ACC drink DAROO 'Yurie drinks wine, right?'



Play rising declarative

Figure: Rising Declarative

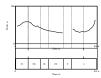
Falling Interrogatives: daroo kal

(3) Yurie-wa wain-o nomu daroo ka↓ Yurie-TOP wine-ACC drink DAROO Q 'I wonder if Yurie drinks wine.'

Play falling interrogative

5/71

Figure: Falling Interrogative


Summary

	Falling	Rising
	daroo↓	daroo†
Declarative	statement	tag/confirmation Q
	('I bet')	(' right?')
	daroo ka↓	daroo ka↑
Interrogative	self-addressing Q	*
_	('I wonder')	

Table: Meaning of daroo according to sentence type and intonation

Rising Interrogatives: daroo kat

(4) #Yurie-wa wain-o nomu daroo ka↑ Yurie-TOP wine-ACC drink DAROO Q

Play rising interrogative

Figure: Rising Interrogative

Outline

- Basic Paradigm
- Proposal: daroo as an Entertain Modality
- Background 1: Inquisitive Epistemic Logic
 - Background 2. Shunting-type expressives
- Proposal 1: Daroo as root-level entertain modal
- ullet Proposal 2: 3 interrogativizers, paratactic association and $\mathcal{L}_{\mathcal{C}l}^{\text{res},res}$
- Deriving the interpretations
- wn-questions
- Conclusion

Proposal 1

Daroo is a root-level/expressive entertain modal $E_{\rm SPKR}$ in inquisitive epistemic logic (IEL), which expresses epistemic issues associated to the speaker. SPKR.

Proposal 2

- There are three kinds of question operators in Japanese that take an at-issue declaratives and render it to an interrogative, C_[o], C_[o]↑ and ↑.
- The question feature [o] is realized by the particle ka, the wh word in Spec CP or both.
 - C_[O] morpho-syntactic integrated at-issue interrogativizer
 C_[O] morpho-syntactically integrated expressive
 - paratactically associated expressive interrogativizer

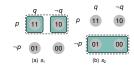
Inquisitive epistemic logic (IEL)

interrogativizer

Ciardelli & Roelofsen (2015)

Inquisitive epistemic logic (IEL) can model:

- the information available to a set of agents
- the issues that the agents entertain
- (5) a. An information state s is a set of possible worlds (s ⊆ W).
 - An issue I ⊆ φ(W) is a non-empty, downward closed set of information states.


Outline

- Basic Paradigm
- Proposal: daroo as an Entertain Modality
 - Background 1: Inquisitive Epistemic Logic
 Background 2: Shunting-type expressives
 - Proposal 1: Dargo as root lovel entertain model
 - Proposal 2: 3 interrogativizers paratactic association and T+S,F
- Deriving the interpretations
 - wh-question:
- Conclusion

9/71

11/71

Information and Issue

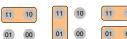
- At s₁ = {w₁₁, w₁₀}
 - the agent's issue: {{w₁₁}, {w₁₀}}
 - the agent knows that p.
 - the agent is interested in whether q or ¬q
- At s₂ = {w₀₁, w₀₀}
 - the agent's issue: $\{\{w_{01}, w_{00}\}, \{w_{01}\}, \{w_{00}\}\}$
 - the agent knows that ¬p
 - the agent doesn't care whether q or $\neg q$

The meanings of a sentence

- . The meaning of a sentence: a proposition.
- A propositions is also an issue, a downward-closed set of information states

Definition (Propositions)

$$\llbracket \varphi \rrbracket := \{ s \subseteq W | s \models \varphi \}$$


- Both declaratives and interrogatives denote propositions
- \bullet $\llbracket \varphi \rrbracket \in D_{((s,t),t)}$
- $[\varphi] \in D_T$

Question Operator (?)

- (Possibilities for a sentence φ) POSSIBILITY $(\varphi) := \{s | s \models \varphi \text{ and there is no } t \supset s \text{ such that } \}$ $t \models \varphi$.
- $(7) \qquad \langle ? \rangle \varphi := \begin{cases} ? \{ \varphi, \neg \varphi \}, & \text{if } | \text{POSSIBILITY}(\varphi)| = 1 \\ \varphi, & \text{if } | \text{POSSIBILITY}(\varphi)| \geq 2 \end{cases}$

Example

(b) a

(c) ?(p, ¬p)

14/71

- (a) p $[p] = \{\{w_{11}, w_{10}\}, \{w_{11}\}, \{w_{10}\}\}$
- $\bullet \ [q] = \{\{w_{11}, w_{01}\}, \{w_{11}\}, \{w_{01}\}\}$

Knowledge and Entertain

- There are two modal operators Knowledge operator K an agent's information state Entertain operator E an agent's inquisitive state the issues that the agent entertain.
- $\llbracket \varphi \text{ daroo} \rrbracket = E_{SPKR} \varphi$

Example 1: $\langle \mathcal{M}, s \rangle \models K_a p$

Support condition for $K_8\varphi$

$$\langle M, s \rangle \models K_a \varphi \iff \text{for any } w \in s, \langle M, \sigma_a(w) \rangle \models \varphi$$

The agent knows that p.

$$\begin{array}{c|cccc}
q & \neg q \\
\hline
11 & 10
\end{array}$$

Figure: $\langle \mathcal{M}, s \rangle \models K_a p$

Example 3: $\langle \mathcal{M}, s \rangle \models E_a?p$

Support condition for $E_{\theta}\varphi$

 $\langle \textit{M}, \textit{s} \rangle \models \textit{E}_{\textit{a}} \varphi \Longleftrightarrow \text{for any } \textit{w} \in \textit{s} \text{ and for any } \textit{t} \in \Sigma_{\textit{a}}(\textit{w}), \langle \textit{M}, \textit{t} \rangle \models \varphi$

• The agent entertains an issue ?p.

Figure: $\langle \mathcal{M}, s \rangle \models E_a?p$

Example 2: $\langle \mathcal{M}, s \rangle \not\models K_a?p$

The agent doesn't knows the answer to ?p

Figure: $\langle \mathcal{M}, s \rangle \not\models K_a?p$

Fact

17/71

For any declarative α , $K_a\alpha \equiv E_a\alpha$

(Ciardelli & Roelofsen, 2015, 1659)

Figure: $\langle \mathcal{M}, s \rangle \models K_a p, \langle \mathcal{M}, s \rangle \models E_a p$

Key Points

- Both declaratives and interrogatives denote propositions $\llbracket \varphi \rrbracket \in \mathcal{D}_T$, where $T = \langle \langle s, t \rangle, t \rangle$
- . E can embed both declaraties and interrogatives.
- For any declarative α , $K_a\alpha \equiv E_a\alpha$

(9) Potts' (2005) CI application

$$\beta : \sigma^{a} \bullet \alpha(\beta) : \tau^{c}$$

$$\alpha : \langle \sigma^a, \tau^c \rangle \quad \beta : \sigma^a$$

(10) McCready's (2010) Shunting-type application

$$\alpha(\beta) : \tau^s$$

$$\alpha : \langle \sigma^a, \tau^s \rangle \quad \beta : \sigma^a$$

Outline

- Basic Paradigm
- Proposal: daroo as an Entertain Modality
 - Background 2: Shunting-type expressives
 - Proposal 1: Daroo as root-level entertain modal
 - Proposal 2: 3 interrogativizers, paratactic association and $\mathcal{L}_{CL}^{+S,PA}$

24/71

- Deriving the interpretations
- wn-questic
- Conclusion

Question Operators

(11) a.
$$[C_{[Q]}] \in D_{\langle T^a, T^a \rangle}$$

b. $[C_{[Q]}] = \lambda \varphi. \langle ? \rangle \varphi$

$$\begin{array}{ll} \text{(12)} & \text{ a. } & \llbracket \mathsf{C}_{[\mathsf{O}]} \uparrow \rrbracket \in D_{\langle \mathcal{T}^a, \mathcal{T}^s \rangle} \\ & \text{ b. } & \llbracket \mathsf{C}_{[\mathsf{O}]} \uparrow \rrbracket = \lambda \varphi. \langle ? \rangle \varphi \end{array}$$

(13) a.
$$[\![\uparrow]\!] \in D_{\langle T^a, T^s \rangle}$$

b. $[\![\uparrow]\!] = \lambda \varphi. \langle ? \rangle \varphi$

(14) a.
$$[daroo] \in D_{\langle T^a, T^s \rangle}$$

b. $[daroo] = \lambda \varphi. E_{SPKR} \varphi$

Outline

- Basic Paradigm
- Proposal: daroo as an Entertain Modality
 - Background 1: Inquisitive Epistemic Logic
 - Background 2: Shunting-type expressive
 - Proposal 1: Daroo as root-level entertain modal
 - Proposal 2: 3 interrogativizers, paratactic association and $\mathcal{L}_{GI}^{+S,PA}$
- Deriving the interpretations
 - wh-questions
- Conclusion

daroo ka cannot be embedded

- (18) Emi-ga igirisu-ni itta nichigainai/kamoshirenai ka douka Emi-NOM England-DAT went must/may Q or.not kiite mita. to ask tried
 - 'I asked whether Emi must/may have left for England or not.'
- (19) *Emi-ga igirisu-ni itta daroo ka douka kiite mita. Emi-NOM England-DAT went DAROO Q or.not to.ask tried Intended: 'I asked whether Emi probably left for England or not.'

- (15) $[daroo] = \lambda \varphi . E_{SPKR} \varphi$
- (16) Ashita hareru daroo ka. Zenzen wakar-anai.
 tomorrow sunny DAROO Q at.all understand-NEG
 'I wonder if it will be sunny tomorrow. I have no idea.'
 - Fact: For any declarative α , $K_a\alpha \equiv E_a\alpha$

 $\begin{array}{c|c} \text{LFs of (falling) } \textit{daroo-sentences} \\ \hline \textit{Declarative} & \textit{a-daroo} \\ \hline \textit{E}_{\text{SPKR}} \alpha \equiv \textit{K}_{\text{SPKR}} p \\ \hline \textit{Interrogative} & \textit{a-daroo ka} \\ \hline \textit{E}_{\text{SPKR}}(\gamma) \alpha \\ \hline \end{array}$

How do we derive the LF $E_{SPKR}(?)\alpha$ from α -daroo ka?

Speaker-orientation

25/71

27 / 71

- (20) Boku-wa ame-ga furu daroo kara kasa-o mot-te
 I-TOP rain-NOM fall DAROO because umbrella-ACC have-and
 it-ta.
 go-PAST
 - 'Because it will rain (I bet), I took an umbrella with me.'

26 / 71

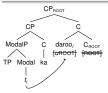
- (21) #John-wa ame-ga furu daroo kara kasa-o mot-te John-TOP rain-NOM fall DAROO because umbrella-ACC have-and it-ta. go-PAST
 - 'Because it will rain (I bet), John took an umbrella with him.'

Surface form

Syntax of daroo

daroo is a root-level expressive operator, which adjoins to C_{ROOT} to check off its uninterpretable feature, [urroot].

(22) LFs of (falling) daroo-sentences


Declarative	2	α-daroo
Boolaran	_	
		$E_{SPKR}\alpha \equiv K_{SPKR}p$
Interrogativ	ē	α-daroo ka
		$E_{SPKR}(?)\alpha$

What is the contribution of ↑?

LF

Syntax of daroo

daroo is a root-level expressive operator, which adjoins to C_{ROOT} to check off its uninterpretable feature, [uroot].

Outline

- Basic Paradigm
- Proposal: daroo as an Entertain Modality
 - Background 1: Inquisitive Epistemic Logic
 - Proposal 1: Daron as root-level entertain modal
 - ${\bf \bullet}$ Proposal 2: 3 interrogativizers, paratactic association and $\mathcal{L}_{CI}^{+S,PA}$
- Deriving the interpretations
- wh-questions
- Conclusion

(23) a.
$$[C_{[0]}] \in D_{(T^a,T^a)}$$

b.
$$[C_{[Q]}] = \lambda \varphi . \langle ? \rangle \varphi$$

(24) a.
$$[C_{[0]} \uparrow] \in D_{(T^a, T^a)}$$

b. $[C_{[0]} \uparrow] = \lambda \varphi.\langle ? \rangle \varphi$

(25) a.
$$[\uparrow] \in D_{\langle T^a, T^s \rangle}$$

b. $[\uparrow] = \lambda \omega. \langle ? \rangle \omega$

Composition Rule

(27) Paratactic Association (R10)

$$\lambda \chi.\alpha(\chi) \bullet \beta(\chi) : \langle \sigma, \tau \times \tau \rangle$$

$$\lambda \chi.\alpha(\chi): \langle \sigma, \tau \rangle \quad \lambda \chi.\beta(\chi): \langle \sigma, \tau \rangle$$

(28) Example: daroo⊗ ↑

$$\begin{array}{ccc} \mathsf{C}_{\mathsf{ROOT}} & \lambda \varphi. \mathsf{E}_{\mathsf{SPKR}} \varphi \blacklozenge (?) \varphi : \langle T^a, T^s \times T^s \rangle \\ & & \\ \mathsf{datoo} \otimes \uparrow & \lambda \varphi. \mathsf{E}_{\mathsf{SPKR}} \varphi : \langle T^a, T^s \rangle & \lambda \varphi. \langle ? \rangle \varphi : \langle T^a, T^s \rangle \end{array}$$

- (26) Syntactic rules of paratactic association
 - Paratactic Association C_{ROOT}

α ® β

α ⊗β
Paratac
C_{BOOT}

b. Paratactic Association with a null head

C_{ROOT} →

| → ∅⊗β

Falling (non-rising) interrogative

- (29) Marie-wa wain-o nomu ka. Marie-TOP wine-ACC drink Q 'whether Marie drink wine'
- (30)

35/71

 $\begin{array}{c|c}
\text{CP} & \\
\text{TP C} & \langle ? \rangle \alpha : T^a \\
 & \downarrow & \\
\alpha & ka & \alpha : T^a & \lambda \varphi . \langle ? \rangle \varphi : \langle T^a, T^a \rangle
\end{array}$

Rising declarative

(31) Marie-wa wain-o nomu↑ Marie-TOP wine-ACC drink 'Does Marie drink wine?'

(32)

At-issue and expressive

- (35) a. Marie-ga wain-o nomu ka Takeshi-wa shitteru. Marie-NOM wine-ACC drink Q Takeshi-TOP know 'Takeshi knows whether Marie drinks wine.'
 - b. *Marie-ga wain-o nomu ↑ Takeshi-wa shitteru.
 Marie-NOM wine-ACC drink ↑ Takeshi-TOP know
 'Takeshi knows Marie drinks wine↑.'
 - c. *Marie-ga wain-o nomu ka↑ Takeshi-wa shitteru. Marie-NOM wine-ACC drink Q↑ Takeshi-TOP know 'Takeshi knows whether Marie drinks wine↑.'

Rising interrogative

(33) Marie-wa wain-o nomu ka↑ Marie-TOP wine-ACC drink 'Does Marie drink wine?'

(34)

English rising declaratives

- (36) Robin is sitting in a windowless computer room with no information about current weather conditions when another person enters. Robin says to the newcomer:
 - a. Is it raining?
 - b. #It's raining↑ (Gunlogson, 2003, 95)
- (37) Robin is sitting, as before, in a windowless computer room when another person enters. The newcomer is wearing a wet raincoat and boots. Robin says:
 - a. Is it raining?b. It's raining?

(Gunlogson, 2003, 96)

English rising declaratives are deviant assertions.

Japanese rising declaratives

- Robin is sitting in a windowless computer room with no (38)information about current weather conditions when another person enters. Robin says to the newcomer:
 - a. Ame-futte masu ka↑ 'Is it raining?'
 - Ame-futte masu† 'Is it raining?'
- Robin is sitting, as before, in a windowless computer room (39)when another person enters. The newcomer is wearing a wet raincoat and boots. Robin says:
 - a. Ame-futte masu ka† 'Is it raining?'
 - b. Ame-futte masu† 'Is it raining?
 - α ↑ and α-ka↑ have the same semantics ⟨?⟩α.
- Japanese Final Rise ↑ is an interrogative operator.

		Falling	Hising
	Declarative	α	α ↑
(40)		$\alpha: T^a$	$\langle ? \rangle \alpha : T^s$
	Interrogative	α-ka	α-ka↑
		$\langle ? \rangle \alpha : T^a$	$\langle ? \rangle \alpha : T^s$

Outline

- Deriving the interpretations

Proposals

Semantics of daroo

- $\lceil daroo \rceil \in D_{(T^a, T^s)}$
- $[\varphi \operatorname{daroo}] = E_{SPKR}\varphi$

Semantics of interrogative operators

- (41) a. $[C_{fol}] \in D_{(T^a, T^a)}$ b. $[C_{[0]}] = \lambda \varphi.? \varphi$
- (42)a. $[C_{[Q]} \uparrow] \in D_{(T^a,T^s)}$ b. $[C_{[Q]} \uparrow] = \lambda \varphi. ? \varphi$
- (43) a. [[↑]] ∈ D_(Ta Ts)

Falling daroo-declarative

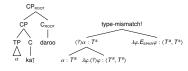
(44)Marie-wa wain-o nomu daroo l Marie-TOP wine-acc drink DAROO 'Marie drinks wine, I bet./Probably, Marie drinks wine.'

Rising daroo-declarative

(46) Marie-wa wain-o nomu daroo↑ Marie-TOP wine-ACC drink DAROO 'Marie drinks wine, right?'

Combined Speech Acts • $E_{SPKR}\alpha = K_{SPKR}\alpha$

- ⟨?⟩α


Falling daroo-interrogative

(45)Marie-wa wain-o nomu daroo ka l Marie-TOP wine-ACC drink DAROO O 'I wonder if Marie drinks wine'

Rising daroo-interrogative

(47) *Marie-wa wain-o nomu daroo ka↑ Marie-TOP wine-ACC drink DAROO Q

Summary

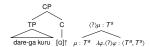
	Falling	Rising	
Declarative	α-daroo↓	α-daroo↑	
	$K_{SPKR}\alpha : T^s$	$K_{SPKR}\alpha \diamond \langle ? \rangle \alpha : T^s \times T^s$	
Polar Interrogative	α-daroo ka↓	*α-daroo ka↑	
	$E_{SPKR}(?)\alpha : T^s$	Type-mismatch	

wh-questions

(48) Dare-ga kuru (ka)? who-nom come Q 'Who is coming?'

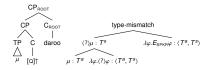
(49)

Outline


- Basic Paradigm
- Proposal: daroo as an Entertain Modality
- Background 1: Inquisitive Epistemic Logic
 - Background 2: Snunting-type expressives
 - Proposal 1: Daroo as root-level entertain modal
 - ullet Proposal 2: 3 interrogativizers, paratactic association and $\mathcal{L}_{CI}^{+S,PA}$
- Opening the interpretations
 - wh-questions
- Conclusion

falling wh-questions

- (50) a. $[Dare-ga kuru] \in D_{\langle (s,t),t \rangle}$
 - b. $[Dare-ga kuru] = \{p | \exists x \in D.x \text{ is human} \& p = |x \text{ is coming}|\} = [\mu]$
- TP C $\langle ? \rangle \mu : T^a$ dare-ga kuru [0] $\mu : T^a \lambda \varphi . \langle ? \rangle \varphi : \langle T^a, T^a \rangle$


rising wh-questions

(51) Dare-ga kuru (ka)↑ who-NOM come Q 'Who is coming?'

rising wh-questions with daroo

(53) *Dare-ga kuru daroo (ka)↑ who-NOM come daroo Q

falling wh-questions with daroo

(52) Dare-ga kuru daroo (ka)↓ who-NOM come daroo Q 'I wonder who is coming.'

Summary

	Falling	Rising	
Declarative	α-daroo↓	α-daroo↑	
	$K_{SPKR}\alpha : T^s$	$K_{SPKR}\alpha \phi \langle ? \rangle \alpha : T^s \times T^s$	
Polar Interrogative	α-daroo ka↓	*α-daroo ka↑	
	$E_{SPKR}(?)\alpha : T^s$	Type-mismatch	
Wh-interrogative	µ-daroo (ka)↓	*μ-daroo (ka)↑	
	$E_{SPKR}\langle?\rangle\mu:T^s$	Type-mismatch	

Concluding Remarks

- daroo is a root-level modal
 → moves to Cnoox
- daroo can embed both declaratives and interrogatives daroo as entertain modal in IEL

declarative $E_{SPKR}\alpha \equiv K_{SPKR}\alpha$ interrogative $E_{SPKR}\mu$

Acknowledgement

This research was supported by JSPS Kiban (C) "Semantic-Pragmatic Interfaces at Left Periphery: a neuroscientific approach" (18K00589; PI: Yurie Hara)

- α-daroo, α-ka↑ and α↑ are not embeddable
 → they are expressives.
- Final Rise ↑ is a prosodic morpheme that is paratactically associated to the sentence.

 → yield a pair of speech acts, K_{SPKR}α•⟨?⟩α for α-daroo↑

Daroo ka↑

The interplay of deictic modality, sentence type, prosody and tier of meaning

58/71

60 / 71

References I

- Ciardelli, Ivano A. & Floris Roelofsen. 2015. Inquisitive dynamic epistemic logic. Synthese 192(6). 1643–1687.
- Gunlogson, Christine. 2003. True to Form: Rising and Falling Declaratives as Questions in English. New York: Routledge.
- Hara, Yurie. 2006. Japanese Discourse Items at Interfaces. Newark, DE: University of Delaware dissertation.
 McCready, E. 2010. Varieties of conventional implicature. Semantics and Pragmatics
- 3(8). 1–57. doi:10.3765/sp.3.8.
- Potts, Christopher. 2005. The Logic of Conventional Implicatures Oxford Studies in Theoretical Linguistics. Oxford: Oxford University Press. [Revised 2003 UC Santa Cruz PhD thesis].

Outline

- Experiments
- Uegaki and Roelfsen (2018)
- Additional Data

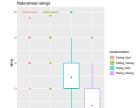
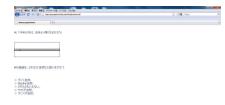



Figure: Average Naturalness Ratings of Experiment I

Faling Deci Faling Interng Rising Deci Rising Interng constructions

Experiment I

Experiment II

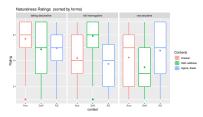


Figure: Average Naturalness Ratings of Experiment II

Uegaki and Roelfsen (2018)

(54) a.
$$\llbracket \varphi \operatorname{daroo} \rrbracket = \llbracket \langle ? \rangle! \varphi \rrbracket$$

b. $\llbracket \varphi \operatorname{daroo} \rrbracket^{\bullet} = \llbracket E_{SPKR} \varphi \rrbracket \cap \llbracket \varphi \rrbracket^{\bullet}$
(55) a. $\llbracket \varphi \downarrow \rrbracket = \llbracket ! \varphi \rrbracket$

b.
$$\llbracket \varphi \downarrow \rrbracket^{\bullet} = \llbracket \varphi \rrbracket^{\bullet}$$

(56) a.
$$\llbracket \varphi \uparrow \rrbracket = \llbracket \langle ? \rangle \varphi \rrbracket$$

b. $\llbracket \varphi \uparrow \rrbracket^{\bullet} = \llbracket \varphi \rrbracket^{\bullet}$

(57) a.
$$\llbracket \varphi \text{ ka} \rrbracket = \llbracket \langle ? \rangle \varphi \rrbracket$$

b. $\llbracket \varphi \text{ ka} \rrbracket^{\bullet} = \llbracket \varphi \rrbracket^{\bullet}$

Outline

- Experiments
- Uegaki and Roelfsen (2018)
- Additional Dat

65/71

67 / 71

(58) U&R's Interpretations of daroo-sentences

	Falling	Rising
Declarative	α-daroo↓	α-daroo↑
at-issue	!⟨?⟩α	⟨?⟩⟨?⟩α
non-at-issue	$K_{\text{SPKR}}\alpha$	$K_{\text{SPKR}}\alpha$
Polar Interrogative	α-daroo ka↓	*α-daroo ka↑
at-issue	!⟨?⟩!⟨?⟩α	$\frac{\langle ? \rangle \langle ? \rangle! \langle ? \rangle \alpha}{\langle ? \rangle}$
non-at-issue	$E_{SPKR}\langle?\rangle\alpha$	$E_{SPKR}(?)\alpha$
Wh-interrogative	μ-daroo (ka)↓	*μ-daroo (ka)↑
at-issue	! !µ	⟨?⟩⟨?⟩!µ
non-at-issue	$E_{SPKR}\mu$	-E _{SPKR} μ

66 / 71

(59) U&R's interpretations of sentences without daroo

	Rising
$\alpha \downarrow$	$\alpha \uparrow$
!α	$\langle ? \rangle \alpha$
$\llbracket \alpha \rrbracket^{ullet}$	$\llbracket \alpha rbracket^{ullet}$
α-ka↓	α-ka↑
!⟨?⟩α	$\langle ? \rangle \langle ? \rangle \alpha$
$\llbracket \alpha \rrbracket^{\bullet}$	$\llbracket \alpha rbracket^{ullet}$
	!α [α]• α-ka↓

Speaker → Subject of the attitude predicate

- (60) a. Mary-wa John-ga kuru daroo to omot-teiru. Mary-TOP John-NOM come DAROO COMP think-PROG 'Mary thinks that probably, John will come.'
 - Boku-wa sou-wa omow-anai-kedo.
 I-TOP so-TOP think-NEG-though
 'I don't thinks o (that he will come), though.' (Hara, 2006, 128-129)

71 / 71

Outline

- Experiments
- Uegaki and Roelfsen (2018)

70 / 71

Additional Data